skip to main content


Search for: All records

Creators/Authors contains: "Zhong, Jun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Direct implementation of metal-organic frameworks as the catalyst for CO 2 electroreduction has been challenging due to issues such as poor conductivity, stability, and limited > 2e − products. In this study, Au nanoneedles are impregnated into a cupric porphyrin-based metal-organic framework by exploiting ligand carboxylates as the Au 3+ -reducing agent, simultaneously cleaving the ligand-node linkage. Surprisingly, despite the lack of a coherent structure, the Au-inserted framework affords a superb ethylene selectivity up to 52.5% in Faradaic efficiency, ranking among the best for metal-organic frameworks reported in the literature. Through operando X-ray, infrared spectroscopies and density functional theory calculations, the enhanced ethylene selectivity is attributed to Au-activated nitrogen motifs in coordination with the Cu centers for C-C coupling at the metalloporphyrin sites. Furthermore, the Au-inserted catalyst demonstrates both improved structural and catalytic stability, ascribed to the altered charge conduction path that bypasses the incoherent framework. This study underlines the modulation of reticular metalloporphyrin structure by metal impregnation for steering the CO 2 reduction reaction pathway. 
    more » « less
  2. null (Ed.)
    Abstract Oxygen reduction reaction towards hydrogen peroxide (H 2 O 2 ) provides a green alternative route for H 2 O 2 production, but it lacks efficient catalysts to achieve high selectivity and activity simultaneously under industrial-relevant production rates. Here we report a boron-doped carbon (B-C) catalyst which can overcome this activity-selectivity dilemma. Compared to the state-of-the-art oxidized carbon catalyst, B-C catalyst presents enhanced activity (saving more than 210 mV overpotential) under industrial-relevant currents (up to 300 mA cm −2 ) while maintaining high H 2 O 2 selectivity (85–90%). Density-functional theory calculations reveal that the boron dopant site is responsible for high H 2 O 2 activity and selectivity due to low thermodynamic and kinetic barriers. Employed in our porous solid electrolyte reactor, the B-C catalyst demonstrates a direct and continuous generation of pure H 2 O 2 solutions with high selectivity (up to 95%) and high H 2 O 2 partial currents (up to ~400 mA cm −2 ), illustrating the catalyst’s great potential for practical applications in the future. 
    more » « less
  3. Abstract

    Solar photocatalysis is a potential solution to satisfying energy demand and its resulting environmental impact. However, the low electron–hole separation efficiency in semiconductors has slowed the development of this technology. The effect of defects on electron–hole separation is not always clear. A model atomically thin structure of single‐unit‐cell Bi3O4Br nanosheets with surface defects is proposed to boost photocatalytic efficiency by simultaneously promoting bulk‐ and surface‐charge separation. Defect‐rich single‐unit‐cell Bi3O4Br displays 4.9 and 30.9 times enhanced photocatalytic hydrogen evolution and nitrogen fixation activity, respectively, than bulk Bi3O4Br. After the preparation of single‐unit‐cell structure, the bismuth defects are controlled to tune the oxygen defects. Benefiting from the unique single‐unit‐cell architecture and defects, the local atomic arrangement and electronic structure are tuned so as to greatly increase the charge separation efficiency and subsequently boost photocatalytic activity. This strategy provides an accessible pathway for next‐generation photocatalysts.

     
    more » « less